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Nonlinear particle kinematics of ocean waves†
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A fundamental relation is derived governing the Lagrangian kinematics of fluid parti-
cles on the surface of nonlinear ocean waves which may be known only stochastically.
The horizontal trajectories of fluid particles on the free surface are shown to obey
a pair of coupled nonlinear Ricatti-type ordinary differential equations driven by
the temporal and spatial gradients of the free-surface elevation defined relative to
an Eulerian frame. This equation is explicit in that it does not require the solution
of a fully nonlinear potential flow free-surface problem and may be viewed as a
deterministic or stochastic equation depending on the interpretation of the definition
of the free-surface elevation. It is free of empirical corrections often used to estimate
the particle kinematics above the calm water surface, is valid in potential flow and
for waves of large steepness in two and three dimensions and in waters of all depths
and may be used for the evaluation of the extreme unsteady loads exerted on surface
piercing vertical circular cylinders by steep random waves.

1. Introduction
The extreme wave loads exerted upon fixed offshore platforms by severe sea states

are known to depend in a critical manner on the kinematics of fluid particles in
the surf zone. Such loads are known to be responsible for the ringing responses
of bottom mounted, tension leg and other offshore platforms, yet their satisfactory
theoretical modelling is yet unavailable. Empirical corrections of the wave particle
velocities and accelerations above the calm water surface are often used (see Wheeler
1970), yet their accuracy is limited in highly nonlinear, unsteady and random wave
conditions. This paper resolves these issues by deriving an explicit model for the
nonlinear kinematics of fluid particles on the exact position of a three-dimensional
ocean surface conditional upon its evolution in a deterministic or stochastic manner by
circumventing the need to solve a fully nonlinear potential flow free-surface problem.

John (1953) (see also Wehausen & Laitone 1960, p. 740) derives an exact relation
between the fully nonlinear kinematics of fluid particles on the surface of two-
dimensional waves to the prescribed evolution of their elevation. John derives this
result in two dimensions by employing complex variable analytic methods. The present
note re-derives this result without the use of complex variables and extends it to three
dimensions. The horizontal trajectories of free-surface fluid particles are shown to
obey a pair of coupled nonlinear Ricatti-type ordinary differential equations driven
by the Eulerian temporal and spatial gradients of the free-surface elevation. This

† With an Appendix by T. J. Bridges.
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Figure 1. Eulerian and Lagrangian coordinates of a fluid particle on the free surface.

equation is explicit in that it does not require the solution of a fully nonlinear
potential flow free-surface problem.

In an Appendix contributed by Thomas J. Bridges, this Ricatti equation is shown to
accept singular solutions. The interpretation of such a singular behaviour in seastates
which are known only stochastically is discussed and Monte Carlo simulations are
suggested as a means of evaluating summary statistics and probability density func-
tions of the nonlinear particle kinematics.

The application of these results to the fully nonlinear loading of slender vertical
cylinders in steep random waves may prove valuable. The particle velocities and
accelerations on the free surface obtained from the solution of the Ricatti equation
include both unsteady and convective components with no empirical corrections of the
wave particle kinematics above the calm water surface being necessary. A numerical
and experimental study by Swan, Bashir & Gudmestad (2002) confirms that linear
random wave theory equipped with empirical corrections for the particle kinematics
above the calm water plane is not capable of modelling accurately the highly nonlinear
wave loads on surface piercing structures. The Swan et al. study further confirms that
the accuracy of nonlinear wave load predictions depends in a critical manner on
the accurate modelling of the unsteady water particle accelerations. Therefore, the
theory presented in the present paper may prove useful in the estimation of extreme
wave loads on offshore structures when coupled with potential wave loading models
for slender vertical cylinders as derived by Rainey (1995) and Faltinsen, Newman &
Vinje (1994). Moreover, the model presented in the present article for the wave particle
kinematics offers a framework for the study of wave breaking in a stochastic wave
environment.

2. Free-surface particle evolution equations
Figure 1 plots a three-dimensional free surface assumed single valued and defined by

z = ζ (x, y, t). (2.1)

The instantaneous vector position of a fluid particle on the free surface is denoted by
ξ (t), the acceleration due to gravity is a downwards pointing vector g =(0, 0, −g), the
atmospheric pressure is a constant equal to pa and n is a unit normal vector normal
to the free surface and pointing out of the fluid domain.

Euler’s equation in the fluid domain and on the free surface, states

d2ξ

dt2
= − 1

ρ
∇p + g. (2.2)
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The function

F (x, y, z, t) = z − ζ (x, y, t) (2.3)

vanishes on the free surface by definition, therefore its gradient

∇F =

(
−∂ζ

∂x
, −∂ζ

∂y
, 1

)
(2.4)

is a vector normal to the free surface, hence colinear with the unit normal vector n.
The hydrodynamic pressure p is also constant on the free surface and equal to its

atmospheric value. Therefore its gradient ∇p is also normal to the free surface and
colinear with ∇F . It follows that the exterior product of ∇F and ∇p vanishes when
evaluated on the free surface, or

∇F × ∇p = 0 on z = ζ (x, y, t). (2.5)

By virtue of Euler’s equation (2.2) and the definition given by (2.4), it follows that on
z = ζ (x, y, t) the following vector identity holds:(

−∂ζ

∂x
, −∂ζ

∂y
, 1

)
×

(
d2ξ

dt2
− g

)
= 0. (2.6)

Upon expansion in its x-, y- and z-components, three identities follow:

∂ζ

∂y

(
d2ξ3

dt2
+ g

)
+

d2ξ2

dt2
= 0, (2.7)

∂ζ

∂x

(
d2ξ3

dt2
+ g

)
+

d2ξ1

dt2
= 0, (2.8)

∂ζ

∂x

d2ξ2

dt2
− ∂ζ

∂y

d2ξ1

dt2
= 0. (2.9)

The set of equations (2.7)–(2.8) represents a coupled system of equations relating
the evolution of the particle trajectories to the spatial gradients of the free-surface
elevation ζ (x, y, t) in three dimensions. Equation (2.9) may be seen to be redundant
since it follows as the difference of (2.7) multiplied by ∂ζ/∂x and (2.8) multiplied by
∂ζ/∂y.

Setting ξ2(t) = 0, ∂ζ/∂y = 0, restricts the problem to the propagation of surface
waves in two dimensions and in the positive or negative x-direction. In this special but
important case, only (2.8) is non-trivial. It must be complemented by the consistency
condition

ξ3(t) = ζ [x = ξ1(t), t] = ζ [ξ1(t), t]. (2.10)

Derivatives of ξ3(t) with respect to time may now be taken formally using (2.10) and
then substituted into (2.8). A straightforward application of the chain rule yields:

dξ3

dt
=

∂ζ

∂t
+

∂ζ

∂x

dξ1

dt
, (2.11)

d2ξ3

dt2
=

∂2ζ

∂t2
+ 2

∂2ζ

∂x∂t

dξ1

dt
+

∂2ζ

∂x2

(
dξ1

dt

)2

+
∂ζ

∂x

d2ξ1

dt2
. (2.12)

Upon substitution of (2.12) into (2.8), a nonlinear ordinary equation relating the
horizontal particle displacement ξ1(t) in terms of spatial and temporal gradients of
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the free-surface elevation ζ (x, t) follows:[
1 +

(
∂ζ

∂x

)2 ]
d2ξ1

dt2
+ 2

∂ζ

∂x

∂2ζ

∂x∂t

dξ1

dt
+

∂ζ

∂x

∂2ζ

∂x2

(
dξ1

dt

)2

= −∂ζ

∂x

(
∂2ζ

∂t2
+ g

)
. (2.13)

Equation (2.13) is the result derived by John (1953) using potential flow analytic
methods.

The two-dimensional result derived above may be extended to three dimensions by
first invoking the more general consistency condition

ξ3(t) = ζ (ξ1(t), ξ2(t), t). (2.14)

It follows that
dξ3

dt
=

∂ζ

∂t
+

∂ζ

∂x

dξ1

dt
+

∂ζ

∂y

dξ2

dt
. (2.15)

After some algebra

d2ξ3

dt2
=

∂2ζ

∂t2
+ 2

∂2ζ

∂x∂t

dξ1

dt
+ 2

∂2ζ

∂y∂t

dξ2

dt
+

∂2ζ

∂x2

(
dξ1

dt

)2

+
∂2ζ

∂y2

(
dξ2

dt

)2

+
∂ζ

∂x

d2ξ1

dt2
+

∂ζ

∂y

d2ξ2

dt2
+ 2

∂2ζ

∂x∂y

dξ1

dt

dξ2

dt
. (2.16)

Upon substitution into (2.8) the following three-dimensional extensions to (2.13)
follow[

1 +

(
∂ζ

∂x

)2 ]
d2ξ1

dt2
+

∂ζ

∂x

∂ζ

∂y

d2ξ2

dt2
+ 2

∂ζ

∂x

∂2ζ

∂x∂y

dξ1

dt

dξ2

dt

+
∂ζ

∂x

[
2

∂2ζ

∂x∂t

dξ1

dt
+ 2

∂2ζ

∂y∂t

dξ2

dt
+

∂2ζ

∂x2

(
dξ1

dt

)2

+
∂2ζ

∂y2

(
dξ2

dt

)2 ]

= −∂ζ

∂x

(
∂2ζ

∂t2
+ g

)
, (2.17)

[
1 +

(
∂ζ

∂y

)2 ]
d2ξ2

dt2
+

∂ζ

∂x

∂ζ

∂y

d2ξ1

dt2
+ 2

∂ζ

∂y

∂2ζ

∂x∂y

dξ1

dt

dξ2

dt

+
∂ζ

∂y

[
2

∂2ζ

∂x∂t

dξ1

dt
+ 2

∂2ζ

∂x∂t

dξ1

dt
+

∂2ζ

∂x2

(
dξ1

dt

)2

+
∂2ζ

∂y2

(
dξ2

dt

)2 ]

= −∂ζ

∂y

(
∂2ζ

∂t2
+ g

)
. (2.18)

The nonlinear system of equations (2.17) and (2.18) extends John’s result to three
dimensions.

3. Solution of particle evolution equations
Equations (2.13) in two dimensions and (2.17)–(2.18) in three accept as input the

ambient wave elevation surface ζ (x, y, t) specified in a deterministic or stochastic
manner. This is the approach followed in most analysis and design studies involving
the interaction of ocean waves and floating structures.

For the sake of clarity, the two-dimensional case will be discussed in the present
section. Extensions to the three-dimensional case, which is more important in practice,
are conceptually obvious, but computationally more tedious.
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The two-dimensional evolution equation (2.13) may be recast in the form

d2ξ1

dt2
+ A(ξ1, t)

dξ1

dt
+ B(ξ1, t)

(
dξ1

dt

)2

= C(ξ1, t), (3.1)

where

A(ξ1, t) =
2
∂ζ

∂x

∂2ζ

∂x∂t

1 +

(
∂ζ

∂x

)2

∣∣∣∣∣∣∣∣∣
x=ξ1

, (3.2)

B(ξ1, t) =

∂ζ

∂x

∂2ζ

∂x2

1 +

(
∂ζ

∂x

)2

∣∣∣∣∣∣∣∣∣
x=ξ1

, (3.3)

C(ξ1, t) =

−∂ζ

∂x

(
∂2ζ

∂t2
+ g

)

1 +

(
∂ζ

∂x

)2

∣∣∣∣∣∣∣∣∣
x=ξ1

. (3.4)

Equation (3.1) is a Ricatti-type equation with time-dependent coefficients defined
by (3.2)–(3.4) which in turn are functions of the prescribed evolution of the
ambient wave surface ζ (x, t) defined as a function of its Eulerian coordinates
(x, t).

An in-depth analysis of the solution properties of the Ricatti equation has been
graciously contributed by Thomas J. Bridges and is detailed in the Appendix. The
analysis in the Appendix demonstrates that the solution of (3.1)–(3.4) for the hori-
zontal particle trajectories may have a potentially very singular behaviour. Moreover,
it is shown in the Appendix that the solution is very sensitive to the selection of the
initial conditions.

As is the case with the solution of other nonlinear equations, the selection of the
appropriate initial conditions may be far from a trivial matter. In the present problem,
the existence of singular solutions may be an indication of the presence of a physical
instability in the particle evolution equations which may offer insights into the
incipience of wave breaking. The analytical proof of the existence of singular solutions
offered in the Appendix confirms that their origin is not of a numerical nature as would
be the case with certain computational algorithms for the simulation of evolution of
nonlinear surface wave trains. Moreover, the transformation of the Ricatti equation
(3.1) into a linear Hamiltonian ODE with time-dependent coefficients in the Appendix
(equation (A8)), reveals analogies with Mathieu type equations which offer valuable
insights into other complex stability problems, for example the capsizing of vessels in
steep random waves, in spite of their approximate nature.

As pointed out in the Appendix, the solution of the free-surface particle path trajec-
tories will be well behaved, if the initial horizontal particle velocity is correctly specified
which may require the solution of the fully nonlinear free-surface problem.

The insights gained from the derivation of (3.1)–(3.4) and the analysis in the
Appendix, however, suggest an alternative stochastic interpretation and use of the
particle evolution Ricatti equation. In a realistic seastate, the free-surface elevation
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is, however, known only stochastically. One possible representation of a stochastic
seastate is based on the use of perturbation theory up to third order, as developed in
Sclavounos (1992).

An alternative stochastic characterization of the ambient wave elevation ζ (x, t) in
narrow-banded sea states is given by the expression

ζ (x, t) = Re{ρ(t) exp(i [ω(t)t − k(ω)x])}, (3.5)

where in a linear setting the relation between the wavenumber and wave frequency
in deep water is given by the dispersion relation k = ω2/g. Randomness in (3.5) is
introduced by assuming that:

ω(t) = ω0t + ϕ(t), (3.6)

where ω0 is a deterministic carrier frequency and ϕ(t) is a slowly varying random
phase, namely, dϕ/dt � ω0 for all t . The modulus ρ(t) is also random, positive
and slowly varying. The joint probability density function of the random variables
(ρ, ϕ, dρ/dt, dϕ/dt) corresponding to a given wave spectral density has been derived
by Longuet-Higgins (1983) and found to be in very good agreement with experimental
measurements. The temporal and spatial derivatives of the ambient wave elevation
that appear in the coefficients of the Ricatti equation (3.1)–(3.4) may be readily obta-
ined from the definitions (3.5) and (3.6).

In this stochastic setting, initial conditions to the Ricatti equation are random vari-
ables drawn from the joint distribution discussed above. Given a sample drawn from
this distribution, the solution of the Ricatti equation may proceed in a deterministic
manner, and as pointed out in the Appendix may develop a singular behaviour for
particular samples. However, summary statistics of the horizontal particle kinematics,
for example, the mean or variance of the horizontal particle velocity or acceleration
may be finite since these are merely integrals of their values weighed by their proba-
bility density functions. Such statistics may be estimated by Monte Carlo simulations
each involving the solution of the Ricatti equation (3.1)–(3.4) for each sample. Singular
solutions of the Ricatti equation may exist for particular samples, yet they may turn
out to be integrable when summary statistics are evaluated.

Simulations along the lines suggested above may also be used for the derivation
of the probability density function of the horizontal particle kinematics in stochastic
seastates. The form of these probability distributions may contain useful insights on
the nature of wave breaking and the likelihood of its occurrence in random waves,
particularly when a subset of the samples lead to singular solutions of the Ricatti
equation.

Knowledge of the statistics of the horizontal particle kinematics discussed above
may also be useful in the evaluation of the inertial loading of vertical cylinders in
steep random waves. These loads are known to depend in a critical manner on the
horizontal acceleration of fluid particles in the surfzone. The values predicted by the
present theory on the actual position of the free surface are bound to be the highest,
therefore errors arising from the interpolation into the fluid domain are likely not to
be material since the exact physics governing the particle kinematics is contained in
(3.1)–(3.4) and its three dimensional extensions (2.17)–(2.18).

This work has been supported by a grant from the Office of Naval Research
(Contract N00014-02-0862) monitored by Dr Paul Rispin and from research support
from Norsk Hydro and Petrobras. This financial support is gratefully acknowledged.
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Appendix. Potentially singular particle paths

By Thomas J. Bridges

Department of Mathematics and Statistics

University of Surrey, Guildford, Surrey, GU2 7XH, UK

A.1. The John–Sclavounos equations

The purpose of this Appendix is to show that the equations derived by Sclavounos
for the horizontal particle positions (2.17)–(2.18) can have potentially very singular
behaviour.

First, write these equations in a convenient form which illustrates their structure
and clarifies their analysis. Shift ζ (x, y, t) = η(x, y, t) + gt2/2 and let

u1(t) =
dξ1

dt
, u2(t) =

dξ2

dt
, B(t) =

[
1 + η2

x ηxηy

ηxηy 1 + η2
y

]
.

Then (2.17)–(2.18) can be reformulated as

B(t)
d

dt

(
u1

u2

)
+ Q(u, t)

(
ηx

ηy

)
= 0, u =

(
u1

u2

)
, (A 1)

where Q(u, t) is the scalar-valued quadratic form

Q(u, t) =

〈(
u1

u2

1

)
, C(t)

(
u1

u2

1

)〉
with C(t) =


ηxx ηxy ηxt

ηyx ηyy ηyt

ηtx ηty ηtt


. (A 2)

The matrix C(t) is a generalized curvature matrix. Generalized in that it views η(x, y, t)
as a graph over all three dimensions: x, y and t , and therefore includes curvature in
time as well as space.

The matrix B(t) is always non-singular. Moreover, (ηx, ηy)
T is an eigenvector of

B(t) with eigenvalue equal to the determinant of B(t). Hence,

B(t)

(
ηx

ηy

)
= det(B(t))

(
ηx

ηy

)
=

(
1 + η2

x + η2
x

) (
ηx

ηy

)
,

and so,

B(t)−1

(
ηx

ηy

)
=

1

1 + η2
x + η2

y

(
ηx

ηy

)
.

Therefore, (2.17)–(2.18) can be written in the form

ut +
Q(u, t)

1 + η2
x + η2

y

∇η = 0 where ∇η =

(
ηx

ηy

)
. (A 3)

There are several special cases of this system. Clearly, if ηy = 0, then u2(t) is a constant,
and the system decouples into a single equation for u1(t). Similarly if ηx = 0, it reduces
to a single equation for u2(t).

Other simplifications of (A 3) are possible when conditions are put on the coeffi-
cients. For example, if ζ 2

x + ζ 2
y �= 0, then the transformation(
u1(t)

u2(t)

)
=

[
ηx −ηy

ηy ηx

] (
u1(t)

u2(t)

)
,
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reduces (A 3) to a coupled equation, one of which is linear and the other a Riccati
equation. With other conditions on the coefficients, the coupled nonlinear equations
can be reduced to coupled linear equations (see Enders & Schmidtmann 1992 for
transformations of this type).

A.2. Singular solutions of planar paths

Consider the special case ηy =0. Then u2(t) is constant, and without loss of generality
can be taken to be zero. Then the coupled system (2.17)–(2.18) reduces to a single
equation for u(t) := u1(t)

ut +
2ζxζxt

1 + ζ 2
x

u +
ζxζxx

1 + ζ 2
x

u2 +
ζx(ζtt + g)

1 + ζ 2
x

= 0. (A 4)

This is a Riccati equation and it can always be transformed to a linear ordinary
differential equation (ignoring for the moment that ζ depends on ξ1). However,
the classical Riccati transformation (Reid 1972) fails because the coefficient of the
nonlinear term, ζxζxx , will in general change sign for any interesting wave fields.
However, we can proceed more generally.

Replace ζ by η as defined above, and introduce the reduced curvature matrix,

C(t) =

[
ηxx ηxt

ηtx ηtt

]
, q(u, t) =

(
u

1

)T

C(t)

(
u

1

)
. (A 5)

Then (A 4) can be written,

ut +
q(u, t)

1 + η2
x

ηx = 0. (A 6)

Now introduce

u = v1/v2. (A 7)

Then substitution into (A 4) leads to the following linear Hamiltonian ODE (again
neglecting the ξ1-dependence of ζ )

Jvt +
ηx

1 + η2
x

C(t)v = 0 where J =

(
0 −1

1 0

)
, v =

(
v1

v2

)
. (A 8)

This ODE is Hamiltonian since J is skew-symmetric and C(t) is symmetric. Note
the central role played by the curvature matrix. Equation (A 8) is derived as follows.
Substitute (A 7) into (A 6),

v̇1

v2

− v1v̇2

v2
2

+
1

v2
2

ηx

1 + η2
x

〈v, C(t)v〉 = 0, (A 9)

or

〈v, Jvt〉 +
ηx

1 + η2
x

〈v, C(t)v〉 = 0, (A 10)

where 〈·, ·〉 is a standard inner product on R2. This equation is satisfied if

Jvt +
ηx

1 + η2
x

C(t)v ∈ Ker(vT ) = γ (t)Jv,

with γ (t) arbitrary. By introducing an exponential transformation

v �→ exp

(∫ t

0

γ (s) ds

)
v,

the γ term can be transformed away. Hence the equation for v(t) is the ODE (A 8).
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The behaviour of the solutions of (A 8) is determined principally by the determinant
of C(t). Now, the determinant of C(t) is proportional to the Gaussian curvature of the
surface ζ (x, t) over space and time. It is this generalized curvature which determines
the behaviour of solutions.

To see the role of the determinant of C(t), consider the special case – for illustration –
where (ηx/1 + η2

x)C(t) is a constant matrix, say D,

Jvt + Dv = 0.

The solutions of this equation are determined by the eigenvalues of JD which are
±

√
−det(D). When the determinant is negative, the solutions are pure exponentials.

However, when the determinant of D is positive, the components of v are sinusoidal
and will therefore have a countable number of zeros. This latter observation leads
to singular behaviour since u = v1/v2 and therefore when v2 passes through zero, the
velocity u has a singularity.

Even though the non-constant coefficient case is more complicated and cannot be
analysed explicitly, it is clear that the solutions of (A 8) will have zeros in general,
and may very well have many zeros. To summarize, the special case of (2.17)–(2.18)
given in (A 4) can be expected to have solutions which blow up in finite time for a
wide range of given free-surface positions ζ (x, y, t).

There is an inherent contradiction in this result. Given a smooth surface, defined
by z = ζ (x, y, t), how is it that particle paths on the free surface can become singular?
This contradiction will be addressed in the next section.

Equation (A 8) is in fact nonlinear. The nonlinearity arises because ζ (and therefore
η) depends on ξ1(t) which in turn is related to u through u = ξ̇1. However, this
nonlinearity will not, in general, remove the singularity – indeed it is more likely that
the nonlinearity will enhance the singular behaviour.

A.3. The role of initial conditions

Riccati equations are very sensitive to initial conditions. For example, consider the
simplest Riccati equation

ut = u2, u(0) = u0,

which has the exact solution

u(t) =
u0

1 − u0 t
.

For positive initial data, all solutions blow up in finite time, with the time of blowup
inversely proportional to the norm of the initial data. On the other hand, all solutions
with negative initial data exist for all time. If the coefficient of the nonlinear term is
non-constant, for example ut = a(t)u2, the set of initial data for which solutions exist
for all time may be even more restricted.

It is clear that we must be careful in choosing initial data for (2.17)–(2.18) or
(A 4). Consider the natural initial data for (A 4) (with obvious generalization to
(2.17)–(2.18)). The Lagrangian particle paths, ξ1(t, a) and ξ2(t, a), are parameterized
by a ∈ R, the particle labels, which can be taken to be the initial data,

x := ξ1(t, a) with ξ1(0, a) = a,

z := ξ2(t, a) with ξ2(0, a) = ζ (a, 0),

with the constraint: ξ2(t, a) = ζ (ξ1(t, a), t) for all (t, a).
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Now, acknowledge the fact that (A 4) is a coupled system

dξ1

dt
= u with ξ1(0, a) = a,

du

dt
= − ηx

1 + η2
x

(ηxx u2 + 2ηxt u + ηtt ) with u(0, a) = u0(a).


 (A 11)

The key – apparently free – parameter here is u0(a). However, in order to model
the water wave with free surface ζ , this initial velocity has to satisfy the kinematic
condition at the free surface: it must be determined from the Eulerian horizontal
velocity. In other words, in addition to the free surface ζ , it is necessary to know the
exact values of the horizontal velocity field at every point on the surface, in order to
specify the appropriate initial condition for the particle velocity.

Denote the Eulerian velocity field in the fluid by U (x, z, t). Then, the initial condition
is determined from,

u0(a) = U (a, ζ (a, 0), 0).

Based on the above analysis, it is reasonable to conjecture that the solutions of
the particle path equations (2.17)–(2.18) or (A 4) will be well behaved if the correct
horizontal velocity at the free surface is used for the initial condition. On the other
hand, Riccati equations are sensitive to changes in initial conditions: it is not clear
how large the region of admissible initial data is. Suppose solutions of (A 11) with
initial data u0(a) exist for all time. Will that also be true if a small numerical error is
introduced into the intial data, say u0(a) �→ u0(a) + ε?
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